Design and Analysis of Algorithm
Divide-and-Conquer (I1)

@ Fast Power/Exponentiation
© Integer Multiplication
© Matrix Multiplication

@ Polynomial Multiplication

1/77

Outline

@ Fast Power/Exponentiation

2/77

Fast Power/Exponentiation Problem

Input. a € R, n € N
Output. a”

Naive algorithm. Sequential multiplication

#(multiplication)=n — 1

3/77

Divide-and-Conquer: Divide

n is even
Qoo ala......... a
7:72 n/2
n is odd
Qoo ala......... ala
(n—=1)/2 (n—=1)/2
. an/? xan? n is even
a =
a2 5 q(=1/2 % nis odd

4/77

Complexity Analysis

Basic operation. multiplication
@ size of subproblem: smaller than n/2

@ two subproblems (with size roughly n/2) are identical, only
need computing once

W(n)=W(n/2)+ 6(1)

master theorem (case 1) = W (n) = ©(logn)

How to realize this algorithm? recursion vs. iteration

5/77

A Recursive Approach

Algorithm 1: Power(a,n): a" = (a=1)™"

1: if n < 0 then return Power(1/a, —n); //handle negative
integer exponent

if n =0 then return 1,

if n =1 then return q;

if n is even then return Power(a? n/2);

if n is odd then return a x Power(a?, (n —1)/2);

Naive implementation: = < Power(a,n/2), return z x x.

@ has the same effect as above: cause we have to compute a?

6/77

An lterative Approach

k
y = a = az;“:O b2k _ H((J,Qk)bk
i=0
Algorithm 2: Square-and-Multiply(a, n)
1 (bg,br—1,...,b1,bg) < BinaryDecomposition(n);
2: y <+ 1;
3. power <+ a;
4. fori =0 to k do
5: if b; = 1 then y < y x power; //add
6: power < power X power // double
7. end
8: return y

Also known as binary exponentiation

Naturally extend to additive semigroups: double-and-add

7/77

Application of Power Algorithm

Fibonacci sequence: 1,1,2,3,5,8,13,21,...
add Fy = 0, we obtain:

0,1,1,2,3,5,8,13,21, ...

Problem. Given initial values Fy =0, F; = 1, compute F,

Naive algorithm. From Fy, F1, ..., repeatedly compute
Fn =I'pn-1+ Fn—2

Complexity. sequential addition: ©(n)

8/77

Properties of Fibonacci Sequence

Better algorithm? How to derive the general formula?

9/77

Properties of Fibonacci Sequence

Better algorithm? How to derive the general formula?

Fp=Fy 1+ Fho

Observation: F,, is a linear combination of F,,_; and F,,_5. This
hints us to use linear algebra to express the recurrence relation.

9/77

Properties of Fibonacci Sequence

Better algorithm? How to derive the general formula?

Fn=Fy1+F, 2

Observation: F,, is a linear combination of F,,_; and F,,_5. This
hints us to use linear algebra to express the recurrence relation.

Proposition. Let {F},} be a Fibonacci sequence, then

Fori F, \ (1 1Y\"
F, F,.1) \10

Proof by mathematical induction

B R (11
AR)\ 10

Basis. n = 1:

9/77

Proof (Induction Step)

Suppose for any n, the formula is correct, i.e.:
Fopi F, (1 1Y\"
F, F,1) \10
Then for n 4 1, according to the definition of Fibonacci sequence:
Fn+2 Fn+1 _ Fn+1 Fn 11
Fn+1 Fn Fn Fn—l 1 0

nduct e (1) (1 11\
nduction premise 1 o 1 ={ 1 0

O =

10/77

Improved Algorithm via Fast Power

=10

Compute M™ using generalized fast power algorithm

Let

Time complexity
@ The number of matrix multiplication 7'(n) = ©(logn)
@ Each matrix multiplication requires 8 number multiplication

@ The overall complexity is ©(logn)

11/77

Improved Algorithm via Fast Power

=10

Compute M™ using generalized fast power algorithm

Let

Time complexity
@ The number of matrix multiplication 7'(n) = ©(logn)
@ Each matrix multiplication requires 8 number multiplication

@ The overall complexity is ©(logn)

Further improvement

@ M can be diagonalized (M = PM'P~') = we could directly
use fast power algorithm for better efficiency on basic
computer step (matrix mul).

11/77

Outline

© Integer Multiplication

12/77

Integer Addition

Addition. Given two n-bit integers a and b, compute a + b.
Subtraction. Given two n-bit integers a and b, compute a — b.

Grade-school algorithm. ©(n) bit operations.

T 1.0 1 0 1 0 1
+ 0 1 1T 1 1 1 0 1
1 01 0 1T O O 1 O

Remark. Grade-school addition and subtraction algorithms are
asymptotically optimal.

13/77

Integer Multiplication

Multiplication. Given two n-bit integers a and b, compute a X b.

©(n?) bit operations

©(n?) atomic bit multiplications + ©(n?) atomic bit additions

1T 101 01 01
X 01 1 1 1 1 01
1101 01 01
0 00 O0O0OOTD O
T 101 0 1 01
1T 101 01 01
1T 101 01 01
T 101 0 1 01
1101 01 01
0 00 O0O0OOO OO O
01101 0O0O0OO0OOO0OO0OO0OO 01

14 /77

Divide-and-Conquer: First Attempt (1/2)

Divide Split two n-bit integer and y into their left and right
halves (low- and high-order bits). Let m = n/2.

T rL TR 2”me—%xR

y yL YR 22y 4+ yr

Use bit shifting to compute
xp = |x/2™|,xr = x mod 2™
yr = |y/2"|,yr =y mod 2™

Example. z = 10110110 = 1011 x 2* 4+ 0110
N~ =~

ZL TR

15/77

Divide-and-Conquer: First Attempt (2/2)

Ty = (2"/2x1; + xR)(Qn/zyL +Yr)
= 2%xpyr + 2”/2(96LyR + ZRYL) + TRYR

Conquer. Multiply four n/2-bit integers, recursively. (significant
operations)

Combine. Add and shift to obtain result.

T(n)= 4T(n/2) + S)\(ill

recursive calls add,shift

master theorem (case 1) = T'(n) = ©(n?)

(Subproblems) too many ~ Same running time as traditional
grade school method, no progress in efficiency.

How can this method be sped up?

16 /77

Gauss’s Trick

Gauss once noticed that although the product of two complex
numbers
(a+ bi)(c+ di) = ac — bd + (be + ad)i

seems involving 4 multiplications, it can in fact be done with 3:

bc+ad = (a+b)(c+d) —ac—bd

Figure: Carl Friedrich Gauss

17/77

Karatsuba’s Algorithm

In 1960, Kolmogorov conjectured grade-school multiplication algo-
rithm is optimal in a seminar. Within a week, Karatsuba, then a
23-year-old student, found a much better algorithm thus disproving
the conjecture. Kolmogorov was very excited about the discovery
and published a paper in 1962.

Figure: Anatolii Karatsuba

Karatsuba algorithm: the first algorithm asymptotically faster than
the quadratic “grade school” algorithm.

18/77

Reduce the Number of Subproblem

Idea. Exploit the dependence among subproblems via Gauss's trick

rLYR + TRYL = (L + TR)(YL + YR) — TLYL — TRYR
—_——

middle term

Algorithm 3: KARATSUBA(z,y,n)

1: if n =1 then return x x y;

2: else m < [n/2];

3 xp < |x/2™|; xR < x mod 2™;

4 yr + |y/2™]; yr « y mod 2';

5. e < KARATSUBA(z L, yr, m);

6: f + KARATSUBA(zR,yr, m);

7. g < KARATSUBA(zr + xR, yr, + Yr, m);
8 return 2°Me 4+ 2™ (g —e — f) + f;

19/77

Theory

Complexity Analysis. Now, the recurrence relation is

T(n) :;j(—‘l()ni2i+ O(n) } = T(n) = @(n10g2 3) _ (_)(nl.585)

Combining and dividing cost f(n) is cheap ~ h(n) dominates
the overall complexity. The constant factor improvement from
4 to 3 occurs at the every level of the recursion, the compound-
ing effect leads to a dramatically lower bound.

[Toom-Cook (1963)] faster generalization of Karatsuba's method
[Schonhage-Strassen (1971)] even faster, for sufficiently large n.

20/77

Some Notes

Practical note:

@ It generally does not make sense to recurse all the way down
to 1 bit. For most processors, 16- or 32-bit multiplication is
single operation.

@ GNU Multiple Precision Library uses different algorithms
depending on size of operands. (used in Maple, Mathematica,
gcc, cryptography, .. .)

Theretical recap (informal):
@ Grad-school add/sub algorithms is optimal since they are local

@ Grad-school mul algorithm is not optimal since it is not very
local: divide helps to shrink locality

21/77

Outline

© Matrix Multiplication

22/77

Inner Product

Inner product. Given two length n vectors a = (aq,...,ay,) and
b= (b1,...,b,), compute

c=(a,b) = iaibi
i=1

Grade school. ©(n) arithmetic operations.

Remark. Grade-school dot product algorithm is asymptotically
optimal.

23/77

Matrix Multiplication
Matrix multiplication. Given two n x n matrix X and Y, compute
n
Z=XY,Zij =Y XY

k=1
J

(4,4)

X Y VA

College-school method: ©(n?) arithmetic operations
o there are n? elements in Z
@ computing each element requires n arithmetic multiplications

Is college-school matrix multiplication algorithm asymptotically
optimal? Can divide-and-conquer strategy do better?

24/77

Naive Divide-and-Conquer

Strategy. Split matrix into blocks:

X1 X2 > (Yii Yio > _ < Z11 212)
Xo1 Xoo Yo1 Yoo Zo1 Zoo
in which:

Z11 = XY + Xq2Yo1 Z1o = X11Y12 + Xi2Y99
Zo1 = Xo1Yi1 + XooYo1 Zog = Xo1Yi9 + XooYo9

Recurrence relation: master theorem (case 1)

recursive calls add/form submatrices

— —
T(n) = 8T(n/2) + O(n?) = T(n) = O(n®)
T(1) =1

25/77

Breakthrough

College algorithm: ©(n?)

Naive divide-and-conquer strategy: ©(n3) (unimpressive)

For a quite while, this was widely believed to the best running
time possible, it was even proved that in certain models no
algorithms can do better.

Great excitement: This effciency can be further improved by some
clever algebra.

26 /77

Strassen Algorithm (1/3)

Volker Strassen first published this algorithm in 1969

@ proved that the ©(n?) general matrix multiplication algorithm
wasn't optimal

o faster than the standard matrix multiplication algorithm and is
useful in practice for large matrices,

@ inspire more research about matrix multiplication that led to
faster approaches, e.g. the Coppersmith-Winograd algorithm.

Figure: Volker Strassen

27/77

Strassen Algorithm (2/3)

(X1 X2) (Yii Yo) _ < Z11 Zi2 >
Xo1 Xoo Yor Yoo Zo1 Zoo
Define 7 instead matrix:

My =X11 (Y12 — Ya9) Express Z;; via instead matrices
My =(X11 + X12)Ya
M3 =(Xo1 + Xo2)Y11
My =X22(Yo1 — Y11)
M5 =(X11 + Xo2)(Y11 + Ya2)
Mg =(X12 — X22)(Yo1 + Ya2)
M7 =(X11 — Xo1)(Y11 + Y12)

Z11 =Ms + My — My + Mg
Z1g =My + My
Zo1 =M3 + My
Zyy =Ms + My — Mg — My

Z1g = My + My = X1 x (Y12 — Ya2) + (X11 + Xi12) X Yoo
= X11 X Y12+ X192 X Yoo

28/77

Strassen Algorithm (3/3)

Reduce the number of subproblems from 8 to 7

Recurrence relation for time complexity (18 is number of
additions/substraction performed at each application of the
algorithm)

— 7T(n n2 ,
T(n) —;{1() LQi + 18 } = T(n) = ©(n'°%) = O(n>97)

29/77

Strassen Algorithm (3/3)

Reduce the number of subproblems from 8 to 7

Recurrence relation for time complexity (18 is number of
additions/substraction performed at each application of the
algorithm)

T(n)="TT(n/2

n?] r
T(1) = i—i— a } = T(n) = O(n'°%F) = ©(n2507)

Q. What if n is not the power of 27

A. Could pad matrices with zeros.

1 2 30 10 11 12 O 8 90 96 0
4 5 70 13 14 15 0 | | 201 216 231 O
78 9 0 16 17 18 0 | | 318 342 366 0
00 00 0 0 0 O 0 0 0 0

29/77

More about Matrix Multiplication

The decompsition is so tricky and intricate that one wonders how
Strassen was ever able to discover it!

30/77

More about Matrix Multiplication

The decompsition is so tricky and intricate that one wonders how
Strassen was ever able to discover it!

Complexity of Matrix Multiplication

@ Best upper-bound: O(n?376)

algorithm

— Coppersmith-Winograd

e Known lower-bound: 2(n?)

30/77

More about Matrix Multiplication

The decompsition is so tricky and intricate that one wonders how
Strassen was ever able to discover it!

Complexity of Matrix Multiplication

@ Best upper-bound: O(n?376)

algorithm

— Coppersmith-Winograd

e Known lower-bound: 2(n?)

Applications

@ scientific computation, image processing, data mining
(regression, aggregation, decision tree)

30/77

Outline

@ Polynomial Multiplication

31/77

Motivation

We have studied how to multiply
o Integers: Gauss's trick

@ Matrix: Strassen algorithm

32/77

Motivation

We have studied how to multiply
o Integers: Gauss's trick

@ Matrix: Strassen algorithm

How to multiply polynomials?

32/77

Motivation

We have studied how to multiply
o Integers: Gauss's trick

@ Matrix: Strassen algorithm
How to multiply polynomials?

Applications of polynomial multiplication

@ Fastest polynomial multiplication implies fastest integers
multiplication
e polynomials and binary integers are quite similar — just
replace the variable x by the base 2 and watch out for carries

@ Multiplying polynomials is crucial for signal processing

32/77

Polynomials: Coefficient Representation

Polynomial. [coefficient representation]

A(z) = ap + a1z + agx® + -+ + a1z

B(z) = by + b1z + boa® + -+ + bp_qz™

33/77

Polynomial Operation
Add. ©(n)
A(z) + B(z) = (ag +bo) + (a1 + b))z 4+ (an_1 + bp_1)z" !

34/77

https://zhuanlan.zhihu.com/p/22166332

Polynomial Operation
Add. ©(n)
A(z) + B(z) = (ag +bo) + (a1 + b))z 4+ (an_1 + bp_1)z" !

Evaluate. three choices:
@ Naive algorithm. compute each term one by one: ©(n?)
e Caching algorithm. cache z%: ©(n)
@ Horner algorithm.
ap + (z(a1 +z(ag + - - - + z(an—2 + x(an—1))))): O(n)
%35 discovered this algorithm hundreds of years earlier
S #4545 https://zhuanlan.zhihu.com/p/22166332

34/77

https://zhuanlan.zhihu.com/p/22166332

Polynomial Operation
Add. ©(n)
A(z) + B(z) = (ag +bo) + (a1 + b))z 4+ (an_1 + bp_1)z" !

Evaluate. three choices:
@ Naive algorithm. compute each term one by one: ©(n?)
e Caching algorithm. cache z%: ©(n)
@ Horner algorithm.
ap + (z(a1 +z(ag + - - - + z(an—2 + x(an—1))))): O(n)
%35 discovered this algorithm hundreds of years earlier
S #4545 https://zhuanlan.zhihu.com/p/22166332

Multiply (convolve). ©(n?) using brute force algorithm

A(:L’) X B(.%') = agpby + (a0b1 + albo)l‘ + -+ an_lbn_ll'Qn
2n—2 ;

%
= E cl-x’,where Cc; = E ajbi,j
=0 Jj=0

-2

34/77

https://zhuanlan.zhihu.com/p/22166332

Pictorial View of Convolution

(co,--scan—2) = (ao, ..., an—1) ® (bo, ..., bn—1)

aoby _agby e agbn—2 _apbp—1

aiby” aiby . cabpa arbpy
an—2bo an72b/1 T ap—2bn—2 a’pﬁ’Q/bnfl
an—1bp"" an—1b1 e an—1by_2 anp_abp_1

35/77

Polynomials: Point-Value Representation

Fundamental theorem of algebra. [Gauss, PhD thesis| A degree
n — 1 polynomial with complex coefficients has exactly n complex
roots.

Corollary. A degree n — 1 polynomial A(z) is uniquely specified by
its evaluation at n distinct values of z.

=

¥=AG)

36/77

Polynomials: Point-Value Representation

Polynomial. [point-value representation]

A(x) : (1‘0, yO)? R (:En—l’ yn—l)
B(x) : (x0,20),-- - (Tn-1,2n-1)

37/77

Polynomial Operation

Add. ©(n) add operations.

A(l‘) + B(I’) : (CBO, Yo + Z()), ey (I‘n,l, Yn—1 + anl)

Multiply (convolve). ©(n), but need 2n — 1 points.

A(x) x B(x) : (20,90 X 20), - -+ (T2n—1,Y2n—1 X 22n—1)

Evaluate. ©(n?) using Lagrange's formula

Z H#k)

= Wizn(zr —)

38/77

Converting Between Two Representations

Trade-off. Fast evaluation or fast multiplication. We want both!

representation | multiply | evaluate
coefficient O(n?) O(n)
point-value ©(n) O(n?)

Goal. Efficient conversion between two representations = enjoy
the best of two worlds: all operations fast

—
ag, a1, -.,0n-1

coefficient representation point-value representation

39/77

Conversion Between Two Representations: Evaluation

Coefficient = Point-value

Given A(z) = ag + a1z + - + a,_12"" !, evaluate it at n distinct

points xq, ..., Tp_1.

2 n—1

i) 1 x S X ap
p 2 n—1

Y1 1 = x]) ai
2 n—1

Y2 | = |1 @2 x5 Ty az
1 2 n—1

Yn—1 Tn-1 Tp_q L1 an—1

Running time. ©(n?) for matrix-vector multiply (or n Horner's).

40,77

Conversion Between Two Representations: Interpolation

Point-value = Coefficient

Given n distinct points zg, ..., x,—1 and values (yo,...,¥Yn—1),
find unique polynomial A(z) = ag + a1z + -+ + a,_12"" !, that
has given values at given points.

B . B 2 n—17 -1 .
ap 1 x asg coeoxg X Y0
e
al 1 x r{ ... @ i Y1
ay | = |1 @9 3 ... a2l Y2
a 1 2 n—1 2
| On—1 | |1 Tn-1 Tp_ Zy_1] L Yn—1]

Vandermonde matrix is invertible iff x;'s are distinct.

Running time. ©(n?) for Gaussian elimination

41/77

Restate Our Goal

Both known conversions are inefficient
e coefficients = point-value: ©(n?)
e point-value = coefficients: O(n?)

More efficient conversions are needed.

42/77

Restate Our Goal

Both known conversions are inefficient
e coefficients = point-value: ©(n?)
e point-value = coefficients: O(n?)

More efficient conversions are needed.

Next, we begin with the first direction. We restate our goal:

Given n coefficients, computing n point-value tuples quickly.

42/77

Restate Our Goal

Both known conversions are inefficient
e coefficients = point-value: ©(n?)
e point-value = coefficients: O(n?)

More efficient conversions are needed.

Next, we begin with the first direction. We restate our goal:

Given n coefficients, computing n point-value tuples quickly.

The optimal complexity of polynomial evaluation algorithm is
O(n). Thus, it seems that ©(n?) complexity for the above goal is
inevitable.

4277

Restate Our Goal

Both known conversions are inefficient
e coefficients = point-value: ©(n?)
e point-value = coefficients: O(n?)
More efficient conversions are needed.

Next, we begin with the first direction. We restate our goal:

Given n coefficients, computing n point-value tuples quickly.

The optimal complexity of polynomial evaluation algorithm is
O(n). Thus, it seems that ©(n?) complexity for the above goal is
inevitable.

High-level key idea: consider the matrix as a whole to increase
non-locality ~ reduce complexity

42/77

Divide-and-Conquer for Evaluation

A(x) = ap + a1z + agx? + azz® + agz* + asz® + aga® + agx”

two choices for dividing: frequency vs. time

Decimation in frequency. Break polynomial into low and high
powers.

Ajow(x) = ag + a1z + asz? + asx®

Apigh(7) = a4 + a5z + agz® + ara®
A(x) = A|0W(:IZ') + 374Ahigh (a:)

Decimation in time. Break polynomial into even and odd powers.
Aeven() = ag + agx + ag2® + aga®

Aggd(z) = a1 + asx + asz? + arx®

A(z) = Aeven(?) + 2Aodd(27)

radix-2 decimation-in-time (DIT)

43/77

Clarification

We emphasize that the goal of dividing is not to improve the
efficiency of polynomial evaluation at a single point, cause it is
already optimal.

The ultimate goal is to improve the efficiency of evaluation of n
points as a whole task.

44 /77

First Attempt

Naive idea. Randomly pick n distinct points zg,...,Z,—_1, then
compute A(x) via Aeyven(2?) + 2 Aogq(?).
e T'(n): evaluate degree-(n — 1) polynomial at n points

e E(n): evaluate degree-(n — 1) polynomial at 1 point

4577

First Attempt

Naive idea. Randomly pick n distinct points zg,...,Z,—_1, then
compute A(x) via Aeyven(2?) + 2 Aogq(?).
e T'(n): evaluate degree-(n — 1) polynomial at n points

e E(n): evaluate degree-(n — 1) polynomial at 1 point

Issue. Efficiency does not improve
e Evaluating A(z) of degree-(n — 1) at n points:
T(n)=n-En)
e Evaluating Aeven(x) and Aggq(x) both of degree-(n/2 — 1) at
n points: 2 x n - E(n/2) =2n-E(n/2)
E(n) is a linear function ~ no efficiency improvement

@ The root is that the size of problem does not fully shrink by
half.

Solution. Reduce the number of evaluated points

4577

Basic Idea (1/2)

Basic idea. Introduce simple structure by choosing the n points to
be positive-negative pairs, that is,

tx0, £21,. .., EXy 21

Note that the even powers of z; coincide with those of —x; = the
computations required for each A(z;) and A(—x;) overlap a lot.

A(xl) = Aeven (xf) + 2 Aodd (:‘UZQ)
A(_mz) = Aeven (-7712) — 2 Aodd (3312)
Now, evaluating degree-(n — 1) polynomial A(z) at n paired points

+x0,...,+7,/9_1 = evaluating degree-(n/2 — 1) polynomials
Aeven(z) and Aogq() at just n/2 points: z3,.. .,xi/z_l.

46 /77

Basic Idea (2/2)

_ e T 91 —Tpyo—
degree =n — 1 xi/mo x\/ﬁ ‘e /2
Aeven (CL‘), Aodd (:L') a2 3 ..

degree =n/2 — 1

Tnj2—1

Now, the original problem of size n is in this way recast as two
subproblems of size 1/2 followed by some linear-time arithmetic.

[T'(n): evaluate a degree (n — 1) polynomial at n points]

@ If we could recurse, we would get a divide-and-conquer
procedure with running time:
T(n) =2T(n/2) + 6(n)

which is ©(nlogn), exactly what we want.
4777

Technical Hurdle

Technical hurdle. The plus-minus trick only works at the top level
of the recursion.

@ To recurse at the next level, we need the n/2 evaluation

points x5, L7, .., Ty oy themselves to be plus-minus pairs.

4877

Technical Hurdle

Technical hurdle. The plus-minus trick only works at the top level
of the recursion.

@ To recurse at the next level, we need the n/2 evaluation

points x5, L7, .., Ty oy themselves to be plus-minus pairs.

But how can a square to be negative?

4877

Technical Hurdle

Technical hurdle. The plus-minus trick only works at the top level
of the recursion.

@ To recurse at the next level, we need the n/2 evaluation

points zg, 7, . .. s T themselves to be plus-minus pairs.

But how can a square to be negative?

4877

Technical Hurdle

Technical hurdle. The plus-minus trick only works at the top level
of the recursion.

@ To recurse at the next level, we need the n/2 evaluation

points zg, 7, . .. s T themselves to be plus-minus pairs.

But how can a square to be negative?

Unless, of course, we use complex numbers.

4877

Which Complex Numbers?

Fine, but which complex numbers? Let us figure out by “reverse
engineer” the process.

@ At the bottom of the recursion, we have a single point, say, 1.
@ In the level above it must consists of its square roots, +1.

@ The next level up is (+1,—1) and (4, —i), until we reach
n = 2F leaf nodes.

WYY
4

49 /77

The Choice of n Complex Numbers

An nth root of unity is a complex number such that ™ = 1.

50 /77

The Choice of n Complex Numbers

An nth root of unity is a complex number such that ™ = 1.

n—1

Fact. The nth roots of unity are w® = 1,wh w?, ..., w" !, where

w = 2™/ = cog 27 —|— 7sin <& 2”

50 /77

The Choice of n Complex Numbers

An nth root of unity is a complex number such that ™ = 1.

Fact. The nth roots of unity are w® = 1,wh w?, ..., w" !, where
w = 2m/" = cog 2T - +isin ZT 2”

Proof. (w) _ (627rzk/n)n — (em‘)% _ (_1)% -1

e =cosx +isinx

If n is even, the nth roots are plus-minus paired, w™/21J = —uJ

@ Squaring them produces the (n/2)-th roots of unity:

WO 0t 02 where v = w? = 4T/

50 /77

The Choice of n Complex Numbers

An nth root of unity is a complex number such that ™ = 1.

Fact. The nth roots of unity are w® = 1,wh w?, ..., w" !, where
w = 2m/" = cog 2T - +isin ZT 2”

Proof. (w) _ (627rzk/n)n — (em)2k _ (_1)2k -1

e =cosx +isinx

If n is even, the nth roots are plus-minus paired, w™/21J = —uJ

@ Squaring them produces the (n/2)-th roots of unity:
WO 0t 02 where v = w? = 4T/

If we start with w®, w!, w?,...,w"" ! for some n = 2%, then at

k-level of recursion we will have the (n/2F)-th roots of unity.
o All these sets of roots are plus-minus paired =
Divide-and-conquer algorithm will work perfectly

50 /77

Demo of n =8

w2
w3

wyq

w1

wo

ws

e

wr

wo =1
V2 V2
—ea1t = 21— - .7
w1 =€ 5 + 5 1
wg—e% =1
w3 __eéfl — _L}{g + jifg -9
2 2
wyg =e™ =—1
WS_Q%’W__@_Q.Z'
2 2
3m, .
we =e2"’'=—1
V2 V2
wy=e1'=— — -1

51/77

Recursion Structure and FFT

VAR

N N

/ wo
§

1 Wy = ws

DFT: Fourier Matrix M, (w)

r . r 1 n—17
0 1 wo wy ... Wy .
Y1 1w w% coowyT
r 2 n—1
Y2 1w Wy ... Wy
ys | T (1 ws wi oo wg_l

, -1

1] (1 weer who w1]

N Y

0

ag
ai
az
as

(n—1

52/77

Fast Fourier Transform (FFT)
Refined Goal. Evaluate A(z) = ag + -+ -+ a,_12" ! at its nth
root of unity: w®, w!, ..., w" !
Divide. Break up polynomial into even and odd powers:
Aeven(T) = ag + azr + agx® + -+ an—2xn/2_l
Aodd(r) = a1 + azz + asz® + - + ap_12™*!

Ax) = Aeven(a:Q) 4+ 2 Aodd (x2)

Conquer. Evaluate Aeyen(x) and Aggq(x) at the n/2th roots of

unity: 00, 0!, ... 0/2 ! . e
Combine. /U = (W)
A(W*) = Aeven(v7) + W Agaa(v*), 1 < k < n/2
A(WF™2) = Agen(v%) — wF Aogq(vF),1 < k < n/2
/Uk — (warn/Q)Q (warn/Q) _ —wk

53 /77

Pseudocode of FFT Algorithm

Algorithm 4: FFT (A, n,w)

S S A S A

Input: coefficient representation of degree n — 1 polynomial
A, principal n-th root of unity w = 2/
Output: value representation A(w'),..., A(w" 1)
if n = 1 then return qag;
express A(z) = Aeven(7?) + 2A0dq(2?);
FFT(Aeven, %,wz) — (Aeven (W), ..., Aeven((wW?)/271));
FFT(AOdd, %,w2) — (Aodd((w2)0), .. ,Aodd((w2)n/271));
for j=0ton—1do
A(w?) = Aeven(w?) + w? Aoga(w?) // O(n);
end
return A(w?),... A(w"Y);

54 /77

FFT Summary

Theorem. Assume n = 2*. FFT algorithm evaluates a degree n — 1
polynomial at each of the n-th roots of unity in ©(nlogn) steps.

Running time
T(n)=2T(n/2) +0O(n) = T(n) = O(nlogn)

Essence: choose n points with special structure to accelerate DFT
computation.

©(nlogn)
. : 77 . .
coefficient representation point-value representation

55 /77

Recap

We first developed a high-level method for multiplying polynomials
coefficient representation = point-value representation

Point-value representation makes it trivial to multiply polynomials,
but the input-output form of algorithm is specified as coefficient
representation.

@ So we designed FFT: coefficient = point-value in time just
©(nlogn), where the points {z;}, are complex n-th roots of
unity (1,w,w?, ..., w" 1),

(values) = FFT((coefficients), w)

Evaluation

coefficient representation Interpolation point-value representation

56 /77

Interpolation

The last remaining piece of the puzzle is the inverse operation —
interpolation. It turns out amazingly that:

1
(coefficients) = —FFT((values),w™)
n

Interpolation is thus solved in the most simple and elegant way,
using the same FFT algorithm, but called with w™! in place of w!

This might seem like a miraculous coincidence, but it will make
a lot more sense when recasting polynomial operations in the
language of linear algebra.

57/77

Inverse Discrete Fourier Transform

Point-value = Coefficient

Given n distinct points zg,...,z,—1 and values yo, ..., ¥n—1, find
unique polynomial A(z) = ag + a1z + - -- + a,_12" %, that has
given values at given points.

Inverse DFT: Fourier Matrix inverse F},(w)™!

r 7 r 1 n—17 -1 1

ao 1 wo w% cee Wy X Yo
e
al 1 w (,ué cooowy X Y1
ag | 1 wo wy .. wy X Yo
az | T |1 w3 wi oo Wi Y3
-1
| Gp—1 | 11 wn—1 w%fl e wﬁ_l_ | Yn—1]

58 /77

—_ = =

—_ = =

MH

€ &€ &
[S2B S

1 -

59 /77

Key Fact

1
G, = *Fn,(wil) = Fn(w)il
n
Claim. F, and G,, are inverses
Proof. Examine F,,G,,

n—1 n—1
S S P R S NS GYR A L
(FnGn)iw = o § OW w - Z%w | 0 otherwise
j= =

Summation lemma. Let w be the principal n-th root of unity. Then
= kj n if k=0modn
E w = .
: 0 otherwise
Jj=0

o If k is the multiple of n then w* =1 = series sums to n

e Each wF is a root of 2" — 1
" —l=@-D1+a+2®+ - +2") = ifwh £1 we
have: 1+ w + wF®@ ... 4 WF(=1) = 0 = series sums to 0

60/77

Consequence

To compute inverse FFT, apply same algorithm but use

o w! = e 2m/" 35 principal n-th root of unity (and divide the
result by n).

@ switch the role of (ag,...,an—1) and (yo,...,Yn—1)

61/77

Interpolation Resolved

(values) = FFT((coefficients), w)

Aw) T 1 w0 wp wi] [ao]
A(wr) 1 w w? Wit
Alwa) | = |1 we w3 wht
Awnt)] 11 wnr @iy oo @]
- 1 —1
(coefficients) = EFFT((values%w)
a0][@ e @] T Al
o |1) @)| | Al
ay | == |1 (wp)' (wy')? (wy)" | Alwo)
n
[an—1 1 (@t (wely)? (wot)" 1] [Alwn-1)

62/77

Inverse FFT Summary

Theorem. Assume n = 2¥. Inverse FFT algorithm interpolated a
degree n — 1 polynomial given values at each of the n-th roots of
unity in ©(nlogn) steps.

Running time. Almost the same algorithm as FFT.

©(nlogn)

coefficient representation O(n logn) point-value representation

63/77

Polynomial Multiplication

Theorem. Two degree (n — 1)-polynomials can be multiplified in
©(nlogn) steps. (pad with Os to make n a power of 2)

coefficient representation coefficient representation
ag, a1, ..,0n—-1
bo,b1,...,bn 1 €0, Cly -+, C2n—2,C2n—1 = 0
2 FFTs | O(nlogn) 1 inverse FFT | O(nlogn)
point-value

A LA _ multiplication
(WO)v) (UJ2n 1) p (wo), o C(an_l)

B(w())?"wB(an—l) @(n)

Actually, 2n — 1 point-value tuples are sufficient.
But, FFT requires the input size to be 2¥, so is the output size

64 /77

Remarks

Standard FFT. Evaluating degree (n — 1)-A(x) at its n-th root of
unity w®,w!, ..., w""! by evaluating degree n/2 — 1 polynomials
Aeven(x) and Aoqq(x) at their n/2-th root of unity.

We choose the degree of polynomial as input size, since it
determines the depth of recursion call.

Standard FFT can be easily extended to evaluating degree (n — 1)
polynomial A(z) at its 2n-th root of unity w® w!,... w21 by
evaluating degree (n/2 — 1) polynomials Aeyen(z) and Aogd(z) at
their n-th root of unity.

We still choose the degree of polynomial as input size, the
recurrence relation is similar,

f(n):O(n) ~ 6(2n)
The overall complexity does not change in asymptotic sense.

65/77

Extension of FFT

FFT works in the field of complex numbers C, the roots might be
complex numbers ~» precision lose is inevitable

Sometimes we only need to work in a finite field, e.g. F = Z/p, the
integers modulo a prime p.
@ Primitive n-th roots of unity exist whenever n divides p — 1,
so we have p = &n + 1 for a positive integer &.
@ Specially, let w be a primitive (p — 1)-th root of unity, then an
n-th root of unity — « can be found by letting o = w?®

Extension = Number-Theoretic Transform (NTT): obtained by
specializing the discrete Fourier transform to F.

@ no precision loss & much faster

@ used extensively in the implementation of SNARK, e.g.

libsnark
libfafft

Ci++ library for FFTs in Finite Fields

libfqfft is a C++ library for Fast Fourier Transforms (FFTs) in finite fields with multithreading support (via
OpenMP). The library is developed by SCIPR Lab and contributors (see AUTHORS file) and is released under the
MIT License (see LICENSE file). The library provides functionality for fast multipoint polynomial evaluation, fast

polynomial and fast of Lagrange pol Is. Check out the Performance section for

memory, runtime, and field operation profiling data.

66 /77

Applications of FFT

@ Optics, acoustics, quantum physics, telecommunications,
radar, control systems, signal processing, speech recognition,
data compression, image processing, seismology, mass
spectrometry...

Digital media. [DVD, JPEG, MP3, H.264]
Medical diagnostics. [MRI, CT, PET scans, ultrasound]

Numerical solutions to Poisson's equation.

Shor’s quantum factoring algorithm.

“The FFT is one of the truly great computational develop ts
of [the 20th] century. It has changed the face of science and
engineering so much that it is not an exaggeration to say that
life as we know it would be very different without the FFT. ”

— Charles van Loan

67/77

Fourier Analysis

Fourier theorem. [Fourier, Dirichlet, Riemann] Any (sufficiently
smooth) periodic function can be expressed as the sum of a series
of sinusoids.

| ™

2 ¥ sinkt
7 = =
(0] ”k% X

Euler’s identity.
e’ =cosz + isinz.

Sinusoids. Sum of sine and cosines = sum of complex exponentials.

68/77

Fourier Transform

[0.005 0.01

time (seconds)

0015 400 600 800 1000 1200 1400 1600
frequency (Hz)

Figure: time domain vs. frequency domain
FFT.

Fast way to convert between time-domain and frequency-domain

Alternate viewpoint.

Fast way to multiply and evaluate polynomials

69 /77

FFT: Brief History

Gauss. Analyzed periodic motion of asteroid Ceres (in Latin)
Runge-Konig (1924). Laid theoretical groundwork.

Danielson-Lanczos (1942). Efficient algorithm, x-ray
crystallography.

Cooley-Tukey (1965). Monitoring nuclear tests in Soviet Union and
tracking submarines. Rediscovered and popularized FFT.

An Algorithm for the Machine Calculation of
Complex Fourier Series
By James W. Cooley and John W. Tukey

An efficient method for the calculation of the interactions of a 2" factorial ex-
periment was introduced by Yates and is widely known by his name. The generaliza-
tion to 3™ was given by Box et al. [1]. Good [2] generalized these methods and gave
elegant algorithms for which one class of applications is the ealculation of Fourier
series. In their full generality, Good’s methods are applicable to certain problems in
which one must multiply an N-vector by an N X N matrix which can be factored
into m sparse matrices, where m is proportional to log N. This results in.a procedure
requiring a number of operations proportional to N log N rather than N*.

paper published only after IBM lawyers decided not to
set precedent of patenting numerical algorithms
(conventional wisdom: nobody could make money selling software!)

Importance not fully realized until advent of digital computers.

70/77

FFT in Practice

Fastest Fourier transform in the West. [Frigo and Johnson]
@ Optimized C library.
o Features: DFT, DCT, real, complex, any size, any dimension.
@ Won Wilkinson Prize '99.

Implementation details.

@ Instead of executing predetermined algorithm, it evaluates
your hardware and uses a special-purpose compiler to generate
an optimized algorithm catered to “shape” of the problem.

@ Core algorithm is nonrecursive version of Cooley-Tukey.
@ O(nlogn), even for prime sizes.

/77

Integer Multiplication, Redux

Integer multiplication. Given two n bit integers a = a,—1...a1a9
and b =b,_1...b1by, compute their product ab.

@ Form two polynomials (base-2 representation = a = A(2),
b= B(2))
Alr) =ag +arx+ - +ap_12"?

B(z) =by+ bz + -+ bp_12™ "

@ Compute C(x) = A(z)B(x) via FFT, evaluate C(2) = ab
Running time: ©(nlogn) complex arithmetic operations.

Practice. GMP uses brute force, Karatsuba, and FFT, depending

on the size of n.
«Ar;metic without milalions»

Figure: the fastest bignum library on the planet

72/77

Summary of This Lecture (1/3)

Concept of Divide-and-Conquer
Main ldea. Reduce problems to subproblems

Principle. Subproblems should be of the same type of the original
problem, and can be solved individually.
@ Direct dividing: splitting original problem into subproblems
with roughly same size
e FindMinMax, Merge Sort
@ Sophisticated dividing
o General selection: using median of median as pivot (finding
the pivot itself requires effort)

o Cloest pair of points: analysis of the strip around the midline
o Convex hull: sometime it is hard to split in a balance manner
(convex hull)

73/77

Summary of This Lecture (2/3)

Implementation. Recursion or iteration (be careful of the smallest
subproblem which can be solved outright)

Time complexity
e Finding the recurrence relation and initial values, solving the
recurrence relation

Recurrence relation of divide-and-conquer algorithm
T(n) = aT(n/b) + f(n)

@ a: #(subproblems), n/b: size of subproblems

e f(n): cost of dividing and combining

74/77

Summary of This Lecture (3/3)

Optimization trick 1. Reduce the number of subproblems: when
f(n) is not very large, h(n) = n'°8 dominates the overall
complexity = T'(n) = ©(h(n))
@ Reduce a can immediately lowering the order of T'(n)
@ When subproblems are related ~> exploit relations to solve
some subproblems by combining the solutions to other
subproblems

Examples
@ power algorithm: subproblems are same
@ simple algebraic trick: integer multiplication (f(n) is still low)
@ exploit dependence: matrix multiplication (f(n) may increase
but does not affect the order)

Optimization trick 2. Reduce the cost of dividing and combining
f(n): add global preprocessing
@ closest pair of points

75/77

Important Divide-and-Conquer Algorithms

Searching algorithm: binary search
Soring algorithm: quick sort, merge sort
Selection algorithm: find min/max, general selection algorithm

Cloest pair of points, Convex hull

Fast Power algorithm
Multiplying matrices: Strassen algorithm

Multiplying integers, polynomials: FFT

76 /77

MATRE

MA R A F NN &, WA 2T OB REZT &,
TER. ARTE, FX—ONAELT.

— RS

7777

AT I
WA A ETHREAZNT A ROHBFEZTABRET K, 2
TR, ARHE TL—WAELT.
— RS F

Figure: A Figure: = 4w 7T —#X

7777

AT IE
MUA s R BB £ 89 &, NS AA 2T AMBRRT &, A
TERE ARTE, FL-MAELT.
— RIS

Figure: A Figure: =™ 7T — %X
AT, BB E, G ’3‘*’]‘4%' BAEFH P RRERER
A, "ﬁff}«?é’]ﬁ:, FAE R, bl kE
E—AE— éﬁfk%‘#’,’f’J:é‘Jé)ﬂE%Ffi%FZ%é\%%..

L

7777

	Fast Power/Exponentiation
	Integer Multiplication
	Matrix Multiplication
	Polynomial Multiplication

